Objectives:

- Review indeterminate forms of limits.
- Introduce and practice using l'Hospital's Rule, a derivative based tool for evaluating limits.

Recap of Indeterminate Forms

Earlier in the semester, we encountered indeterminate forms while taking limits.

For example, $\lim_{x\to\infty} \frac{x^4 - 3x^2 + 4}{x^2 + 1}$ is an indeterminate form, because:

The limit of the numerator is ∞ and the limit of the denominator is ∞ so we have the form $\frac{\infty}{2}$

 $\lim_{x \to \infty} \underline{f(x)} = \frac{\infty}{\infty}$ **Note:** We don't write $\lim_{x \to \infty} f(x) \text{ has indeterminate form } \frac{\infty}{\infty}$ Instead write

Types of Indeterminate Forms:

$$rac{\infty}{\infty}, rac{0}{0}, 0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$$

The terms are "fighting" over the limit. Will it be 0 or infinite or inbetween?

Forms that are not indeterminate:

$$\frac{0}{\infty}, \frac{\infty}{0}, \infty + \infty, -\infty - \infty, \infty^1, \frac{\text{constant}}{0}, 0^\infty$$

In the past we have dealt with indeterminate forms by attempting to rewrite the existing function in a way that doesn't lead to an indeterminate form.

Examples of various methods:

Find $\lim_{x\to\infty} \frac{x^4 - 3x^2 + 4}{x^2 + 1}$ if it exists. Indeterminate Form: $\frac{\infty}{\infty}$ $\lim_{x \to \infty} \frac{x^4 - 3x^2 + 4}{x^2 + 1} = \lim_{x \to \infty} \frac{x^4 - 3x^2 + 4}{x^2 + 1} \left(\frac{\frac{1}{x^2}}{\frac{1}{x^2}}\right) = \lim_{x \to \infty} \frac{x^2 - 3 + \frac{4}{x^2}}{1 + \frac{1}{x^2}} = \frac{\infty - 3 + 0}{1 + 0} = \infty$

Find $\lim_{x\to\infty} \sqrt{x^2 + 3x} - x$ if it exists. Indeterminate form: $\infty - \infty$.

$$\lim_{x \to \infty} \sqrt{x^2 + 3x} - x = \lim_{x \to \infty} \sqrt{x^2 + 3x} - x \left(\frac{\sqrt{x^2 + 3x} + x}{\sqrt{x^2 + 3x} + x}\right) = \lim_{x \to \infty} \frac{\sqrt{x^2 + 3x}^2 - x^2}{\sqrt{x^2 + 3x} + x} = \lim_{x \to \infty} \frac{3x}{\sqrt{x^2 + 3x} + x}$$
$$= \lim_{x \to \infty} \frac{3}{\frac{\sqrt{x^2 + 3x}}{x} + 1} = \lim_{x \to \infty} \frac{3}{\sqrt{\frac{x^2 + 3x}{x^2} + 1}} = \lim_{x \to \infty} \frac{3}{\sqrt{1 + \frac{3}{x} + 1}} = \frac{3}{\sqrt{1 + 0} + 1} = \frac{3}{2}$$

However, there are some limits where this doesn't work. For example, $\lim_{x\to\infty} \frac{x^2}{e^x}$ has the indeterminate form $\frac{\infty}{1}$ but we can't simplify it with any of our existing strategies.

Now that we know how to take derivatives, we can add another tool to our indeterminate form toolbox:

l'Hospital's rule applies for: a is a constant, a is $\pm \infty$, two-sided or left and right limits

Why?

Think about the case where f(a) = g(a) = 0 (and f', g' continuous, $g'(a) \neq 0$). Near $a, f(x) \approx f'(a)(x-a) + f(a) = f'(a)(x-a)$ and $g(x) \approx g'(a)(x-a) + g(a) = g'(a)(x-a)$ so $\frac{f(x)}{g(x)} \approx \frac{f'(a)(x-a)}{g'(a)(x-a)} = \frac{f'(a)}{g'(a)}$. See the book for a more proof-like explanation. The really tricky part is generalizing.

Examples:

1.
$$\lim_{x \to \infty} \frac{x+3}{x^2+2x}$$

Form: $\frac{\infty}{\infty}$, and $\lim_{x \to \infty} \frac{x+3}{x^2+2x} = \lim_{x \to \infty} \frac{1}{2x+2} = 0$
2. $\lim_{x \to 2} \frac{x-2}{x^2-4}$
Form: $\frac{0}{0}$, and $\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{1}{2x} = \frac{1}{4}$
3. $\lim_{x \to \infty} \frac{x^2}{e^x}$
Form: $\frac{\infty}{\infty}$, and $\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0$
4. $\lim_{x \to 0} \frac{x}{\cos(x)}$
Form: $\frac{0}{1}$ so can't use l'Hospital. $\lim_{x \to 0} \frac{x}{\cos(x)} = \frac{0}{1} = 0$
5. $\lim_{x \to 0} \frac{x}{\sin(x)}$
Form: $\frac{0}{0}$, and $\lim_{x \to 0} \frac{x}{\sin(x)} = \lim_{x \to 0} \frac{1}{\cos(x)} = \frac{1}{1} = 1$